Package: MaxWiK 1.0.5
MaxWiK: Machine Learning Method Based on Isolation Kernel Mean Embedding
Incorporates Approximate Bayesian Computation to get a posterior distribution and to select a model optimal parameter for an observation point. Additionally, the meta-sampling heuristic algorithm is realized for parameter estimation, which requires no model runs and is dimension-independent. A sampling scheme is also presented that allows model runs and uses the meta-sampling for point generation. A predictor is realized as the meta-sampling for the model output. All the algorithms leverage a machine learning method utilizing the maxima weighted Isolation Kernel approach, or 'MaxWiK'. The method involves transforming raw data to a Hilbert space (mapping) and measuring the similarity between simulated points and the maxima weighted Isolation Kernel mapping corresponding to the observation point. Comprehensive details of the methodology can be found in the papers Iurii Nagornov (2024) <doi:10.1007/978-3-031-66431-1_16> and Iurii Nagornov (2023) <doi:10.1007/978-3-031-29168-5_18>.
Authors:
MaxWiK_1.0.5.tar.gz
MaxWiK_1.0.5.zip(r-4.5)MaxWiK_1.0.5.zip(r-4.4)MaxWiK_1.0.5.zip(r-4.3)
MaxWiK_1.0.5.tgz(r-4.4-any)MaxWiK_1.0.5.tgz(r-4.3-any)
MaxWiK_1.0.5.tar.gz(r-4.5-noble)MaxWiK_1.0.5.tar.gz(r-4.4-noble)
MaxWiK_1.0.5.tgz(r-4.4-emscripten)MaxWiK_1.0.5.tgz(r-4.3-emscripten)
MaxWiK.pdf |MaxWiK.html✨
MaxWiK/json (API)
NEWS
# Install 'MaxWiK' in R: |
install.packages('MaxWiK', repos = c('https://tughall.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/tughall/maxwik/issues
- Data.2D - List of the objects for the 2D example of the MaxWiK methods usage
Last updated 6 hours agofrom:d0bf433eba. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 26 2024 |
R-4.5-win | OK | Nov 26 2024 |
R-4.5-linux | OK | Nov 26 2024 |
R-4.4-win | OK | Nov 26 2024 |
R-4.4-mac | OK | Nov 26 2024 |
R-4.3-win | OK | Nov 26 2024 |
R-4.3-mac | OK | Nov 26 2024 |
Exports:apply_rangeget.MaxWiKMaxWiK_templatesMaxWiK.ggplot.densityMaxWiK.predictormeta_samplingMSE_simread_fileread_hyperparametersrestrict_datasampler_MaxWiKsampler_MaxWiK_parallel
Dependencies:abcabc.dataclicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclelocfitmagrittrMASSMatrixMatrixModelsmgcvmunsellnlmennetpillarpkgconfigquantregR6RColorBrewerrlangscalesSparseMsurvivaltibbleutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Function to restrict values of the data according with the range for each dimension | apply_range |
List of the objects for the 2D example of the MaxWiK methods usage | Data.2D |
Function to copy the templates from extdata folder in the library to /Templates/ folder in the working directory | MaxWiK_templates |
Density plot | MaxWiK.ggplot.density |
Function to get Approximate Bayesian Computation based on Maxima Weighted Isolation Kernel mapping | get.MaxWiK MaxWiK.predictor meta_sampling |
Function to read file | read_file |
Function to read hyperparameters and their values from the file | read_hyperparameters |
Function to restrict data in the size to accelerate the calculations | restrict_data |
Function to generate parameters and simulate a model based on MaxWiK algorithm | sampler_MaxWiK sampler_MaxWiK_parallel |